上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納(8篇)
哪些上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)能夠真正幫助到我們呢?在我們上學(xué)期間,看到知識(shí)點(diǎn),都是先收藏再說(shuō)吧!知識(shí)點(diǎn)有時(shí)候特指教科書(shū)上或考試的知識(shí)。下面是小編給大家整理的上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納,僅供參考希望能幫助到大家。
上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納篇1
首先,我們知道sin(a+b)=sina__cosb+cosa__sinb,sin(a-b)=sina__cosb-cosa__sinb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina__cosb
所以,sina__cosb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa__sinb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa__cosb-sina__sinb,cos(a-b)=cosa__cosb+sina__sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa__cosb
所以我們就得到,cosa__cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina__sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個(gè)公式:
sina__cosb=(sin(a+b)+sin(a-b))/2
cosa__sinb=(sin(a+b)-sin(a-b))/2
cosa__cosb=(cos(a+b)+cos(a-b))/2
sina__sinb=-(cos(a+b)-cos(a-b))/2
好,有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式.
我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2
把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式:
sinx+siny=2sin((x+y)/2)__cos((x-y)/2)
sinx-siny=2cos((x+y)/2)__sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)__cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)__sin((x-y)/2)
上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納篇2
(三角形中位線(xiàn)的定理)
三角形的中位線(xiàn)平行于三角形的第三邊,并且等于第三邊的一半。
(平行四邊形的性質(zhì))
、倨叫兴倪呅蔚膶(duì)邊相等;
、谄叫兴倪呅蔚膶(duì)角相等;
、燮叫兴倪呅蔚膶(duì)角線(xiàn)互相平分。
(矩形的性質(zhì))
、倬匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);
、诰匦蔚乃膫(gè)角都是直角;
③矩形的對(duì)角線(xiàn)相等。
正方形的判定與性質(zhì)
1、判定方法:
1鄰邊相等的矩形;
2鄰邊垂直的菱形;
3對(duì)角線(xiàn)垂直的矩形;
4對(duì)角線(xiàn)相等的菱形;
2、性質(zhì):
1邊:四邊相等,對(duì)邊平行;
2角:四個(gè)角都相等都是直角,鄰角互補(bǔ);
3對(duì)角線(xiàn)互相平分、垂直、相等,且每長(zhǎng)對(duì)角線(xiàn)平分一組內(nèi)角。
等腰三角形的判定定理
(等腰三角形的.判定方法)
1、有兩條邊相等的三角形是等腰三角形。
2、判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這個(gè)三角形是等腰三角形簡(jiǎn)稱(chēng):等角對(duì)等邊。
角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。
定義中有幾個(gè)要點(diǎn)要注意一下的,學(xué)習(xí)方法,就是角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì)出現(xiàn)直線(xiàn),這是角平分線(xiàn)的對(duì)稱(chēng)軸才會(huì)用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上
標(biāo)準(zhǔn)差與方差
極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。
計(jì)算器——求標(biāo)準(zhǔn)差與方差的一般步驟:
1、打開(kāi)計(jì)算器,按“ON”鍵,按“MODE”“2”進(jìn)入統(tǒng)計(jì)SD狀態(tài)。
2、在開(kāi)始數(shù)據(jù)輸入之前,請(qǐng)務(wù)必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計(jì)存儲(chǔ)器。
3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個(gè)數(shù)據(jù)的輸入。如果想對(duì)此輸入同樣的數(shù)據(jù)時(shí),還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。
4、當(dāng)所有的數(shù)據(jù)全部輸入結(jié)束后,按“SHIFT”“2”,選擇的是“標(biāo)準(zhǔn)差”,就可以得到所求數(shù)據(jù)的標(biāo)準(zhǔn)差;
5、標(biāo)準(zhǔn)差的平方就是方差。
上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納篇3
1.定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
(1)平行四邊形的對(duì)邊平行且相等;
(2)平行四邊形的鄰角互補(bǔ),對(duì)角相等;
(3)平行四邊形的對(duì)角線(xiàn)互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對(duì)平行四邊形的五種判定方法,進(jìn)行劃分:
第一類(lèi):與四邊形的對(duì)邊有關(guān)
(1)兩組對(duì)邊分別平行的四邊形是平行四邊形;
(2)兩組對(duì)邊分別相等的四邊形是平行四邊形;
(3)一組對(duì)邊平行且相等的四邊形是平行四邊形;
第二類(lèi):與四邊形的對(duì)角有關(guān)
(4)兩組對(duì)角分別相等的四邊形是平行四邊形;
第三類(lèi):與四邊形的對(duì)角線(xiàn)有關(guān)
(5)對(duì)角線(xiàn)互相平分的四邊形是平行四邊形
上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納篇4
1、 必然事件、不可能事件、隨機(jī)事件的區(qū)別
2、概率
一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率 會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p就叫做事件A的概率(probability), 記作P(A)= p.
注意:(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映.
(2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計(jì)得到事件發(fā)生的概率,但二者不能簡(jiǎn)單地等同.
3、求概率的方法
(1)用列舉法求概率(列表法、畫(huà)樹(shù)形圖法)
(2)用頻率估計(jì)概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來(lái)估計(jì)事件發(fā)生的概率.另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)(事件發(fā)生的概率)附近,說(shuō)明概率是個(gè)定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡(jiǎn)單地等同.
上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納篇5
1.一元二次方程:在整式方程中,只含 個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是 的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次項(xiàng),( )叫做一次項(xiàng),( )叫做常數(shù)項(xiàng);( )叫做二次項(xiàng)的系數(shù),( )叫做一次項(xiàng)的系數(shù).
2.易錯(cuò)知識(shí)辨析:
(1)判斷一個(gè)方程是不是一元二次方程,應(yīng)把它進(jìn)行整理,化成一般形式后再進(jìn)行判斷,注意一元二次方程一般形式中 .
(2)用公式法和因式分解的方法解方程時(shí)要先化成一般形式.
(3)用配方法時(shí)二次項(xiàng)系數(shù)要化1.
(4)用直接開(kāi)平方的方法時(shí)要記得取正、負(fù).
上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納篇6
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大,則稱(chēng)y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k [拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x)(x-x ) [僅限于與x軸有交點(diǎn)A(x ,0)和 B(x,0)的拋物線(xiàn)]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。
上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納篇7
1、必然事件、不可能事件、隨機(jī)事件的區(qū)別
2、概率
一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率
會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p就叫做事件A的概率(probability), 記作P(A)=p.
注意:(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映。
(2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計(jì)得到事件發(fā)生的概率,但二者不能簡(jiǎn)單地等同。
3、求概率的方法
(1)用列舉法求概率(列表法、畫(huà)樹(shù)形圖法)
(2)用頻率估計(jì)概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來(lái)估計(jì)事件發(fā)生的概率。另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)(事件發(fā)生的概率)附近,說(shuō)明概率是個(gè)定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡(jiǎn)單地等同.
上學(xué)期初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納篇8
一、圓周角定理
在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半。
、俣ɡ碛腥矫娴囊饬x:
a.圓心角和圓周角在同一個(gè)圓或等圓中;(相關(guān)知識(shí)點(diǎn) 如何證明四點(diǎn)共圓 )
b.它們對(duì)著同一條弧或者對(duì)的兩條弧是等弧
c.具備a、b兩個(gè)條件的圓周角都是相等的,且等于圓心角的一半.
②因?yàn)閳A心角的度數(shù)與它所對(duì)的弧的度數(shù)相等,所以圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半.
二、圓周角定理的推論
推論1:同弧或等弧所對(duì)的圓周角相等,同圓或等圓中,相等的圓周角所對(duì)的弧也相等
推論2:半圓(或直徑)所對(duì)的圓周角等于90°;90°的圓周角所對(duì)的弦是直徑
推論3:如果三角形一邊的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
三、推論解釋說(shuō)明
圓周角定理在九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)中屬于幾何部分的重要內(nèi)容。
①推論1是圓中證明角相等最常用的方法,若將推論1中的“同弧或等弧”改為“同弦或等弦”結(jié)論就不成立.因?yàn)橐粭l弦所對(duì)的圓周角有兩個(gè).
、谕普2中“相等的圓周角所對(duì)的弧也相等”的前提條件是“在同圓或等圓中”
③圓周角定理的推論2的應(yīng)用非常廣泛,要把直徑與90°圓周角聯(lián)系起來(lái),一般來(lái)說(shuō),當(dāng)條件中有直徑時(shí),通常會(huì)作出直徑所對(duì)的圓周角,從而得到直角三角形,為進(jìn)一步解題創(chuàng)造條件
、芡普3實(shí)質(zhì)是直角三角形的斜邊上的中線(xiàn)等于斜邊的一半的逆定理.
本站(databaseit.com)部分圖文轉(zhuǎn)自網(wǎng)絡(luò),刊登本文僅為傳播信息之用,絕不代表贊同其觀點(diǎn)或擔(dān)保其真實(shí)性。若有來(lái)源標(biāo)注錯(cuò)誤或侵犯了您的合法權(quán)益,請(qǐng)作者持權(quán)屬證明與本網(wǎng)聯(lián)系(底部郵箱),我們將及時(shí)更正、刪除,謝謝